Skip to main content
PUT
http://api.gu1.ai
/
entities
/
upsert
Upsert
curl --request PUT \
  --url http://api.gu1.ai/entities/upsert \
  --header 'Authorization: Bearer <token>' \
  --header 'Content-Type: application/json' \
  --data '
{
  "entity": {},
  "options": {},
  "options.conflictResolution": {},
  "options.deduplicationStrategy": {},
  "options.createRelationships": true
}
'
{
  "success": true,
  "action": "<string>",
  "entity": {},
  "previousEntity": {},
  "confidence": 123,
  "reasoning": "<string>",
  "conflicts": [
    {}
  ]
}

Overview

The upsert endpoint intelligently creates a new person or updates an existing one based on configurable duplicate detection strategies. It automatically handles conflicts and prevents duplicate records using exact matching, fuzzy matching, or AI-powered similarity detection.

Endpoint

PUT http://api.gu1.ai/entities/upsert

Authentication

Requires a valid API key in the Authorization header:
Authorization: Bearer YOUR_API_KEY

Request Body

entity
object
required
The person data (same structure as Create Person endpoint)
options
object
Configuration options for upsert behavior
options.conflictResolution
enum
How to handle conflicts when an existing person is found:
  • source_wins - New data overwrites existing data
  • target_wins - Keep existing data, ignore new data
  • manual_review - Flag for manual review without updating
  • smart_merge (default) - Intelligently merge both datasets
options.deduplicationStrategy
enum
Strategy for detecting duplicate persons:
  • exact_match - Match by externalId and taxId (case-insensitive)
  • fuzzy_match - Similarity matching on name and taxId (80% threshold)
  • ai_similarity - AI-powered semantic similarity detection
  • hybrid (recommended) - Exact match with fuzzy fallback
options.createRelationships
boolean
default:"true"
Whether to automatically create relationships between entities

Response

success
boolean
Indicates if the operation succeeded
action
string
The action performed: created or updated
entity
object
The final person state after upsert
previousEntity
object
The person state before update (null if newly created)
confidence
number
Confidence score (0-1) for the duplicate detection match
reasoning
string
Explanation of why the person was created/updated
conflicts
array
Array of field-level conflicts detected during merge (if any)

Examples

Simple Upsert (Default Behavior)

curl -X PUT http://api.gu1.ai/entities/upsert \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "entity": {
      "type": "person",
      "externalId": "customer_12345",
      "name": "MarΓ­a GonzΓ‘lez",
      "countryCode": "AR",
      "taxId": "20-12345678-9",
      "entityData": {
        "person": {
          "firstName": "MarΓ­a",
          "lastName": "GonzΓ‘lez",
          "dateOfBirth": "1985-03-15",
          "occupation": "Software Engineer",
          "income": 85000
        }
      }
    }
  }'

Upsert with Fuzzy Matching

curl -X PUT http://api.gu1.ai/entities/upsert \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "entity": {
      "type": "person",
      "externalId": "customer_new_123",
      "name": "Maria Gonzales",
      "countryCode": "AR",
      "taxId": "20-12345678-9",
      "entityData": {
        "person": {
          "firstName": "Maria",
          "lastName": "Gonzales"
        }
      }
    },
    "options": {
      "deduplicationStrategy": "fuzzy_match",
      "conflictResolution": "smart_merge"
    }
  }'

Response Examples

Created New Person

{
  "success": true,
  "action": "created",
  "entity": {
    "id": "550e8400-e29b-41d4-a716-446655440000",
    "externalId": "customer_12345",
    "type": "person",
    "name": "MarΓ­a GonzΓ‘lez",
    ...
  },
  "previousEntity": null,
  "confidence": 1.0,
  "reasoning": "No existing entity found matching criteria. Created new entity.",
  "conflicts": []
}

Updated Existing Person

{
  "success": true,
  "action": "updated",
  "entity": {
    "id": "550e8400-e29b-41d4-a716-446655440000",
    "externalId": "customer_12345",
    "type": "person",
    "name": "MarΓ­a GonzΓ‘lez",
    "entityData": {
      "person": {
        "income": 95000
      }
    },
    ...
  },
  "previousEntity": {
    "id": "550e8400-e29b-41d4-a716-446655440000",
    "entityData": {
      "person": {
        "income": 85000
      }
    },
    ...
  },
  "confidence": 1.0,
  "reasoning": "Exact match found on externalId. Updated existing entity with smart merge.",
  "conflicts": [
    {
      "field": "entityData.person.income",
      "oldValue": 85000,
      "newValue": 95000,
      "resolution": "source_wins"
    }
  ]
}

Use Cases

Data Import from CRM

// Import customer data from CRM, avoiding duplicates
async function importCustomer(crmData) {
  const response = await fetch('http://api.gu1.ai/entities/upsert', {
    method: 'PUT',
    headers: {
      'Authorization': 'Bearer YOUR_API_KEY',
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      entity: {
        type: 'person',
        externalId: crmData.customerId,
        name: crmData.fullName,
        countryCode: crmData.country,
        taxId: crmData.taxId,
        entityData: {
          person: {
            firstName: crmData.firstName,
            lastName: crmData.lastName,
            income: crmData.annualIncome
          }
        },
        attributes: {
          source: 'crm_import',
          importDate: new Date().toISOString()
        }
      },
      options: {
        deduplicationStrategy: 'hybrid',
        conflictResolution: 'smart_merge'
      }
    })
  });

  return response.json();
}

Progressive Data Enrichment

def enrich_person_data(external_id, new_data):
    """Progressively add data to person as it becomes available"""
    response = requests.put(
        'http://api.gu1.ai/entities/upsert',
        headers={
            'Authorization': 'Bearer YOUR_API_KEY',
            'Content-Type': 'application/json'
        },
        json={
            'entity': {
                'type': 'person',
                'externalId': external_id,
                'name': new_data.get('name'),
                'countryCode': new_data.get('country'),
                'entityData': new_data.get('details', {}),
                'attributes': new_data.get('attributes', {})
            },
            'options': {
                'deduplicationStrategy': 'exact_match',
                'conflictResolution': 'smart_merge'  # Merge new with existing
            }
        }
    )

    result = response.json()
    if result['action'] == 'updated':
        print(f"Enriched existing person with new data")
    return result

Best Practices

  1. Choose the Right Strategy:
    • exact_match for clean, structured data with reliable IDs
    • fuzzy_match for user-entered data with potential typos
    • hybrid for most production scenarios
  2. Handle Conflicts Gracefully:
    • Use smart_merge for automatic resolution
    • Use manual_review for critical data
    • Check conflicts array in response for important changes
  3. Monitor Confidence Scores:
    • Scores below 0.7 may indicate weak matches
    • Log low-confidence updates for review

Error Responses

400 Bad Request

{
  "error": "Invalid tax ID format for country"
}

500 Internal Server Error

{
  "error": "Failed to upsert entity"
}

Next Steps